Francois.Bremond@inria.fr

INRIA Sophia Antipolis – **STARS team**

Nice University Hospital - CoBTeK,

uxembourd

Objectives:

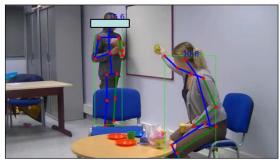
- to measure objectively human behaviors by recognizing their everyday activities, their emotion, eating habits and lifestyle,
- to improve and optimize the quality of life of people suffering from behavior disorders.

Method:

- Designing vision systems for the recognition of human activities
- Human behavior can be modeled by learning from a large number of data from a variety of sensors.

Challenges:

- Perception of Human Activities : robustness
 - Long term activities (from sec to months),
 - Real-world scenarios,
 - Real-time processing with high resolution.
- Semantic Activity Recognition : semantic gap
 - From pixels to semantics, uncertainty management,
 - Human activities including complex interactions with many agents, vehicles, ...
 - Fine grained facial expressions, rich 3D spatio-temporal relationships.
- Learning representation: effective
 - Combining Multi-modalities: RGB, 2D/3D Pose, Flow, bio-signals, voice, ...
 - Cross spatial and temporal dimensions : LSTM, TCN, Transformers, ...
 - Using learning mechanisms: fusion, multi-tasks, guided-Attention, Self-Attention, Knowledge Distillation, contrastive learning,
 - In various learning modes : supervised, weakly-supervised, cross-datasets, unsupervised, selflearning, life long learning


Collaboration with Nice Hospital:

- Mental health from birth to the end of life: clinical trials
 - Children: autism,
 - Adults: schizophrenia, depression,
 - Older adults: dementia, Alzheimer, frailty

Find biomarkers in videos of patient-clinician interaction

Datasets

- with sufficient annotation but with general scene
 - Kinetics, Toyota Smart Home, NTU, iMiGUE, Eyediap
- with appropriate scene but without sufficient annotation
 - MOTAP, CHU Nice, INRIA Nancy, DeepSPA
- with appropriate scene and with specific annotation
 - MPII Group Interaction, ACTIVIS, Mephesto?

Toyota Smart-Home Large scale daily living dataset

COMPOSITE & ELEMENTARY ACTIVITIES

Breakfast

Cook

Clean dishes

Cut bread

Spread butter

Take ham

Eat at table

Cut (vegetable/meat)

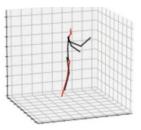
Put sth. in sink

Stir

Clean with water

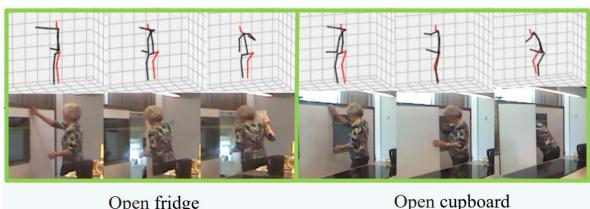
Use oven

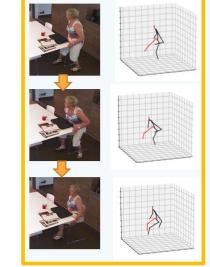
Use stove


Dry up

Privileged Modalities

RGB


Depth


Optical Flow

3D skeleton

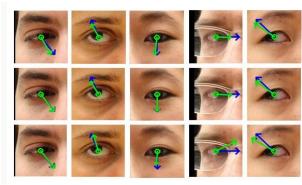
Complementary Nature

Open fridge

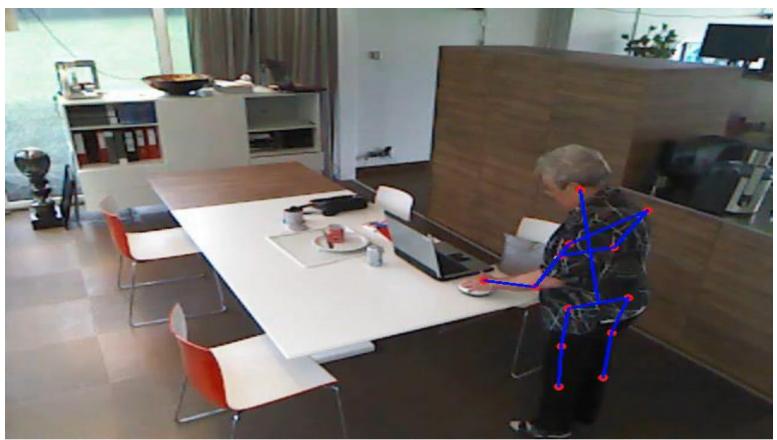
Sit down

Filtering the noisy appearance patterns Help capturing the body motion

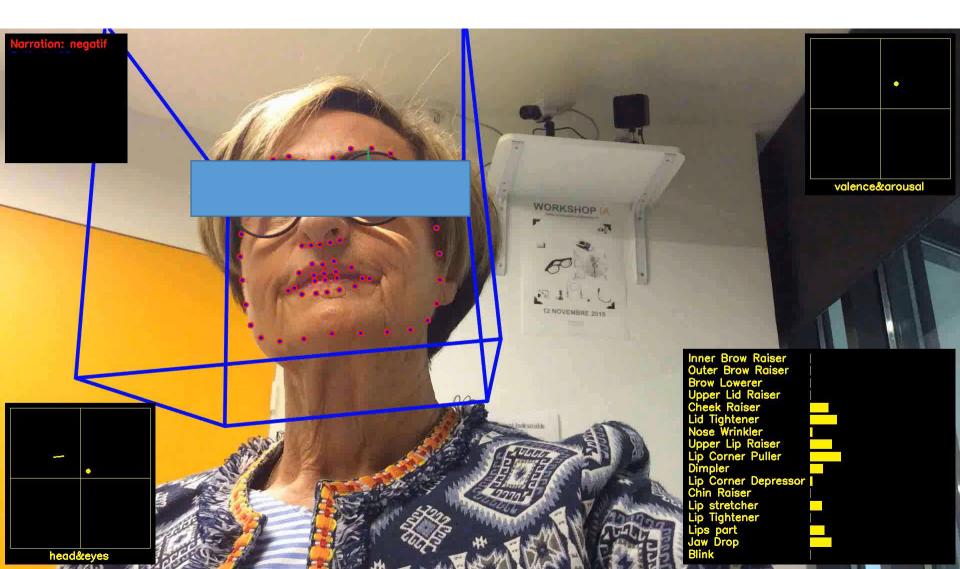
[ICCV 2021] Learning an Augmented RGB Representation with Cross-Modal Knowledge Distillation for Action Detection


Find biomarkers in videos of patient-clinician interaction

Methods


- For detecting, tracking people, skeleton and face SSD+DeepSort, YOLOvX+ByteTrack, OpenPose, OpenFace,
- for estimating gaze, head rotation, eye contact and 17 action units OpenFace, FLAME
- for recognizing emotions and personality through multi-modalities (e.g. Bio-signals)
 DeepFace, MultiModalMAE, FAt Transformer
- for detecting actions and gestures UNIK, PDAN, VPN++, THORN, MS-TCT
- For data augmentation, anonymization, Video Generation G3AN, ImaGINator, LIA

Toyota Smart-Home Large scale daily living dataset



Action Detection in Untrimmed Video[TP][FP][FN]CorrectlyWronglyMissDetectedDetectedDetected

Take_pills

Emotion Recognition : Facial Expression Recognition

Characterizing the state of Apathy using Facial Motion and Emotion

Data Augmentation : Video Generation

Conclusion – People Monitoring

A **global framework** for building real-time video understanding systems:

- Activity Monitoring Systems to measure levels of everyday activities: from handcrafted to (un)supervised learned models of activity
- Robust for long term video monitoring
- Online and real-time recognition with limited user interaction during training

Perspectives:

- View-point invariant Real-world settings
- Generate totally unsupervised models
- Generic semantic activity models (cross scenes), Adaptive learning
- Use finer features as input for the algorithm (head, posture, facial, hand, gesture...)
- More semantics, emotion, mental states.
- Multi-modalities (e.g. speech)
- Reaction to Stimulation : Serious Games

